Convex Optimization 2015.09.23

Positive (semi)definite metrics

  • Notations: ASn means ARn×n, A symmetric

    A0 or ASn+ means A positive semidefinite (xTAx0,xRn)

    A>0 or ASn++ means A positive definite (xTAx>0,xRn{0})

  • Reminder: A matrix A is symmetric iff it is orthogonally diagonalizable: A=PTDP,PP=I

  • Facts: A0D0 all eigenvalues of A are nonnegative

    A>0D>0 all eigenvalues of A are positive

  • Proof: If D0, then D0,s.t.D=D2

    Then xTAx=xTPTDDPx=(DPx)TDPx=DPx220

  • Notations: Outer product (of x,y): xyT=[x][y]=[x1y1x1ynxny1xnyn]

    Let A=[aT1aTn]T, B=[b1...bn]

    Then BA=[b1bn][aT1aTn]=b1aT1+...+bnaTn

  • Lemma: If A0 and Aii=0, then the ith row and column of A are zero.

  • Picture:

    [0000000]

  • Proof: WLOG i=1, If A1j0, then let x=e1+λej.

    Then xTAx=λ2Ajj+2λA1j

    ddλxTAx=λ0(2λAjj+2A1j)|λ=0=2A1j0,(xTAx)|λ=0=0

  • Lemma: Any matrix of the form BTB is positive semidefinite, BRm×n

  • Proof: Trivial (xTBTBx=Bx22)

  • Fact: For every ASn+ there exists BRn×n, B upper triangle, such that A=BTB (Cholesky decomposition)

    $B^TB =

    [||||||||||][]

    = A = $

    $

    [||||][]
    • [|||][]
      • = $
      []+[]+...+[]
  • Proof: By lemma, can assume A110, in fact, can assume that A11=1, So

    A=[1aT12a12A22],B=[1aT12]

    [1a12][1aT12]=[1aT12a12a12aT12]

    Have A[1a12][1aT12]=[000A22a12aT12]

    So need to show that:

    S=A22a12aT12Sn1+ is positive semidefinite

    Let xRn1,

    Then xTSx=xTAxxTa12aT12x=xTA(aT12x)2

    Let y=[aT12xx],

    yTAy=(aT12x)2+xTA22x(aT12x)2(aT12x)2=xTSx0

  • Basic Fact: xxTAx is a norm if A>0

  • Proof: x+yx+y

    (x+y)TA(x+y)xTAx+yTAy

    xTAx+yTAy+2xTAyxTAx+yTAy+2xTAxyTAy

    (yATx)(yATx)(xTAx)(yTAy)

    Let z=Bx,w=By,

    Then (wTz)(wTz)(zTz)(wTw)=z22w22

  • Basic Fact: The function xxTAx is convex if A0

  • Proof: Same as for the function x2 (At some point use that (x+y)TA(x+y)0)

  • Definition: An ellipsod in Rn is a set of the form E={x:(xx0)TA1(xx0)1}

    for some A>0

    Have A=PTDP, put xx0=PTu

    A1=PTD1P,(uTP)A1(PTu)=uTD1u=ni=11λiu2i

  • Lemma: A set E is an ellipsoid iff and only if there exists an invertible matrix ZRn×n,s.t.E={x0+Zu:u21}

  • Proof: {x0+Zu:u21}={y:Z1(yx0)21}={y:(yx0)TZ1TZ1(yx0)1}

Hyperplane Seperation Theorem:

  • Theorem: If C,DRn are convex sets, disjoint, then there exists aRn0,bR,s.t.aTxb,xC;aTxb,xD

  • Proof: when C,D are closed and D is bonded,

    Let d(C,D)=infxC,yDxy2,

    Then (xn)n=1C,(yn)n=1D,s.t.limnxnyn2=d(C,D)

    Even, can assume (yn)n=1 is convergent.

    Then limnynD because D is closed

    can also assume that xn convergent

    Now, let c=limnxnC,d=limnynD

    Then cd2=limnxnyn2=d(C,D)>0

    Choose a=dc,b=(dc)T(d+c2)

    Assume by contradiction that x0D,s.t.aTx0<b

    Hope is that some point of form d+λ(x0d) is even closer to c than d is,

    for λ[0,1],(d+λ(x0d)c)T(d+λ(x0d)c)

    =dTd2dTc+cTc+2λ(x0d)T(dc)+λ2(x0d)T(x0d)

    =dc22+2λ(x0d)T(dc)+λ2(x0d)T(x0d)

    And (dc)T(dc2)=dc2220,aTx0<b

    (x0d)T(dc)T(d+c2)<0

    So (x0d)T(dc)T(d+c2)(dc)T(dc2)<0

    λ=0,ddλ=(x0d)T(dc)+2λ(x0d)T(x0d)=(x0d)T(dc)<0

    minAxb22 where ARm×n,bRm

    Have Axb22=(Axb)T(Axb)=xTATAx2bTAx+bTb

  • Definition: f(x1,,xn)=[x1f,...,xnf]T

    bTb=0,2bTAx=2ATb,xTATAx=2ATAx(ATAxATb=0)